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Abstract
Based on the Bean–Rodbell model, which assumes a linear variation
of exchange coupling with atom spacing, the magnetovolume effects in
LaFe13−x Six (x = 1.2–2.0) have been systematically studied. A relation
between phase volume and magnetization is first obtained by comparing the
structural and magnetic data collected at various temperatures. The maximum
spontaneous magnetostriction thus derived is dependent on the content of Si,
linearly decreasing from ∼2.15% for x = 1.2 to ∼1.12% for x = 2. Based
on these results and limited experimental data, the parameters involved in the
Bean–Rodbell model are determined for the LaFe13−xSix compounds. Further
analysis indicates that the Bean–Rodbell model equipped with these parameters
gives a satisfactory description of the magnetovolume effects produced by
interstitial hydrogen for the LaFe11.44Si1.56 hydride. To explain the pressure
effects, in contrast, changes of the parameters under pressure, which are a result
of the enhancement of the first-order character of the phase transition, have to be
taken into account. These results indicate that either the increase or the decrease
of the Curie temperature is simply a consequence of the variation of the phase
volume due to the introduction of interstitial atoms or the application of a high
pressure, and can be described well by the Bean–Rodbell model.

1. Introduction

A giant magnetocaloric effect has recently been observed in the intermetallics LaFe13−xSix

(LFS) [1, 2]. It occurs accompanying a first-order magnetic transition, which causes a sharp
magnetization drop, and thus a great entropy increase. The entropy change can be as high as
∼20 J kg−1 K−1, nearly double that of Gd (∼12 J kg−1 K−1), for a magnetic field change of
0–5 T even near the ambient temperature.

In contrast to MnAs and Gd5Si4−x Gex , LFS exhibits an isotropic lattice expansion, without
structure changes, at the magnetic transition, and the relative volume change can be as large as
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1.3% [2–4]. Signatures of strong magnetoelastic coupling are also observed in this compound.
It was found that the magnetic transition shifts to high temperatures when the lattice expands
due to, for example, the introduction of interstitial hydrogen, and a lattice expansion of ∼2.1%
can lead to an increase of the Curie temperature by ∼140 K [5]. In contrast to Si doping, which
drives the magnetic transition from first order to second order, in the meantime increasing
the Curie temperature, the magnetic transition maintains a first-order nature as the Curie
temperature increases. However, when the lattice shrinks under high pressure or on replacing
La with smaller rare-earth atoms, the transition temperature decreases. It has been revealed
that a pressure of 1 GPa can reduce the Curie temperature by ∼90 K [6, 7]. Although the
introduction of interstitial hydrogen and the application of a high pressure produce different
effects, a common feature of the two processes is the variation of the phase volume of the
compound, either expansion or contraction. These results indicate the presence of a close
relation between the ferromagnetic (FM) coupling and the atom spacing in LFS: the former
enhances/weakens as the atom spacing increases/decreases.

These results actually imply a simultaneous variation of exchange and elastic energies,
and thus magnetic and lattice entropies, which is a hot topic of recent researches. There is
evidence that the contributions to the magnetocaloric effects from the latter and the former are
comparable [8, 9]. Therefore, a systematic study of the magnetoelastic coupling is obviously
important for the understanding and controlling of the entropy changes in LFS and related
materials.

In fact, for a compound that experiences a first-order phase transition, the transition
temperature (Ta) is not the measure of the exchange coupling in either the FM or the
paramagnetic (PM) phase. It will take a value in between the Curie temperatures of these
two phases. Bean and Rodbell have proposed a simple relation TC = T0(1 + βω) to describe
the magnetoelastic coupling in this case [10], where TC and T0 are the Curie temperatures of
the FM and the PM phases, respectively, and ω = (V − V0)/V0 (V0 is the volume without
exchange interactions) is the relative volume change. This formula suggests a linear increase
of the Curie temperature of the FM phase with the growth of the atom spacing. Based on it, the
magnetovolume effects in MnAs can be qualitatively explained.

In this paper, we will first examine the applicability of the Bean–Rodbell model to
LFS, then attempt to determine the parameters involved in this model for the LFS system
based on limited experiment data and, furthermore, provide a quantitative analysis for the
magnetovolume effects in LFS. It is found that either the increase or the decrease of the Curie
temperature could be simply a consequence of the variation of the phase volume due to, for
example, the introduction of interstitial atoms or the application of a high pressure, and can be
described well by the Bean–Rodbell model.

2. Experiment

LaFe13−x Six (LFS) samples with x = 1.2, 1.4, 1.6, 1.8, and 2 were prepared by arc melting
appropriate amounts of starting materials (99.9% in purity) under ultrapure argon atmosphere
(∼10 at.% excessive La was used to compensate for the weight loss during the arc melting).
The resultant ingots were first annealed in an evacuated quartz tube for one month at 1050 ◦C
to improve the crystallization of the sample and then quenched into liquid nitrogen.

The phase purity and crystal structure of the resultant samples are studied with a
MAC Science x-ray diffractometer (M18-AHF) equipped with a cryostat (20–300 K), and
the magnetic properties were measured by a superconducting quantum interference device
(SQUID) magnetometer. All the data presented here was collected during the warming process
after zero-field cooling the sample to the predetermined temperatures.
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Figure 1. Lattice constant as a function of temperature for selected LFS samples. The solid lines
are guides for the eye.

3. Spontaneous magnetostriction

The x-ray diffraction (XRD) study indicated that the samples are of single phase with a cubic
structure for x � 1.4 and that they contain minor α-Fe for x < 1.4 (∼2–6% in weight
fraction according to the analyses of the Rietveld refinement of the XRD spectra and magnetic
measurements). Figure 1 shows the lattice constants, deduced from the XRD data, as functions
of temperature for different compositions. The most remarkable observations are the gradual
decrease of lattice constant with the increase of temperature in the low-temperature range,
instead of thermal expansion, and the sharp lattice contraction at a definite temperature of
x-dependence, which is also the temperature of the magnetic transition. The former can be
ascribed to thermal spin fluctuation, which leads to a reduction of magnetization, and thus a
lattice shrinkage, as will be seen below, and the latter reveals the very different phase volume
of the FM and the PM phases. These results are in qualitative agreement with those reported
previously by different authors.

Based on the Bean–Rodbell relation, the Gibbs free energy per volume is, within the mean
field approximation [11],

G(T, P, H ) = − 3J

2(J + 1)
NkBT0(1 + βω)σ 2 + 1

2
Bω2 − T S + Pω − Hg JμBNσ, (1)

where kB is the Boltzmann constant, N the number of spins per volume, J the quantum number
of spins, σ = M/(Ng JμB) the normalized magnetization, B the bulk elastic modulus of LFS,
P the pressure, g the Landè g-factor, and H the magnetic field. The first term describes the
exchange energy, the second term the elastic energy, and the last term the Zeeman energy. With
the use of the equality ∂G/∂ω = 0, a requirement for thermal equilibrium, it is easy to obtain
that

ω = 3J

2(J + 1)B
NkBT0βσ 2 − P/B. (2)

Under the ambient pressure, the second term is unimportant compared with the first one,
and can be omitted. This equation relates the phase volume to the magnetization. The prefactor
3J NkBT0β/[2(J + 1)B] of the first term is the maximum spontaneous magnetostriction: the
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volume change when the system transforms from a fully magnetically ordered state into a
completely disordered state. It varies proportionally to T0, β and the reciprocal of B . This
relation can be experimentally examined since both ω and σ are measurable quantities.

It is obvious that spontaneous magnetization should be used to compare with the lattice
constant to avoid the modification of external field to magnetic behaviours. Unfortunately, it
is difficult to obtain an exact spontaneous magnetization for LFS, especially near the transition
point, by simply extrapolating high-field data to H → 0 because of the occurrence of the field-
induced metamagnetic transition. After careful consideration, we collected the magnetization
data under a field of 1 T, which can effectively eliminate undesired extrinsic effects without
significantly affecting the magnetic transition. The magnetization as a function of applied
field, recorded at different temperatures in the vicinity of Ta, is shown in figure 2(a) for
the sample with x = 1.6. The square of the normalized thermal magnetization curves is
shown in figure 2(b). It is obvious that the abnormal lattice variation below TC is a combined
effect of the thermal expansion and the spontaneous magnetostriction. To compare the lattice
variation and the magnetization, the thermal expansion should be corrected, which is not an
effect of magnetic origin. This implies that (�a/a − γ T ) = J NkBT0βσ 2/[2(J + 1)B]
if a linear thermal expansivity (γ ) independent of temperature is assumed. The parameters
involved in this equation can be determined by fitting the a(T ) relation (lattice constant) to
the σ(T )2 relation. A field of 1 T may cause a high temperature shift of Ta by ∼4 K. This
factor is considered during the curve-fitting by simply shifting the ω–T curve upwards. The
lattice constants, after a thermal expansion correction and an appropriate amplification, are also
presented in figure 2(b) for comparison. After optimizing the fitting parameters, a satisfactory
agreement between the two sets of data is observed in the whole temperature range from 20 to
300 K, especially near the Curie temperature, where rapid changes in a and σ take place.

Based on the above analyses, the thermal expansion and the spontaneous magnetostriction
of LFS can be derived. The linear thermal expansivity is ∼8.2 × 10−6 K−1, essentially
independent of the Si content of the compound. This value is similar to that observed in
ordinary metals and intermetallics. Meanwhile, the parameter 3J NkBT0β/[2(J + 1)B] takes
a value between ∼0.0215 and ∼0.0112, depending on the content of Si (figure 3). It decreases
approximately linearly with the increase of x , and nearly halves on going from x = 1.2 to 2.0.
Although it is small, a simple analysis reveals that considerable magnetostriction exists until
x ≈ 2.85. The nature of the magnetic transition can be analysed based on Landau theory [10].
The transition is of first order if η = 40J 2(J +1)2 NkBT0β

2/[(2J +1)4−1]B > 1, while it is of
second order when η < 1. η changes from above 1 to below 1 with the increase of x , as will be
seen in the next section. Therefore, the decrease of the spontaneous magnetostriction reflects
the weakening of magnetoelastic coupling, and thus the evolution of the magnetic transition
from first order to second order. One thing deserving special attention is that although there is
considerable magnetostriction, the magnetic transition can be of second order. The meaning of
this result is twofold. The first one is that the volume change is not an exclusive criterion for
the first-order phase transition. The second one is that the σ–T dependence can be different
even for a second-order phase transition, varying with η.

In fact, the ω ∝ σ 2 relation has been previously verified in the temperature range below
Ta for a special sample x = 1.6, and the maximum spontaneous magnetostriction obtained is
∼0.018, a value similar to that derived here [12].

4. Determination of the model parameters

According to equation (2), the spontaneous magnetostriction is determined by T0 and β , which
can be extracted from the limited experimental data of LFS. According to the Bean–Rodbell
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Figure 2. (a) Magnetization as a function of applied field for the sample with x = 1.6, recorded at
different temperatures. The temperature step is 2 K in the vicinity of the Ta, from 200 to 230 K, and
5 K in the regions of 190–200 K and 230–255 K. (b) Temperature dependence of the square of the
normalized magnetization (σ 2) and the relative volume change (�V/V ) after thermal expansion
correction and proper amplification.

relation, the first-order transition takes place at a temperature Ta � T0. The latter is the Curie
temperature of the PM phase, and it can be determined by the Curie–Weiss law based on
thermal magnetization data. Figure 4 shows T0 and Ta as functions of x , and the inset plot
is a demonstration for the derivation of T0. It is clear that T0 is significantly smaller than Ta

when x is small, approaches Ta as x increases, and reaches Ta at x = 1.8. It is interesting to
note that when x � 1.8 the magnetic phase transition in LFS changes from first order to second
order; thus Ta ≈ T0.
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Figure 3. The maximum spontaneous magnetostriction as a function of Si content in LFS. The solid
and dashed lines are guides for the eye.
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the figure and the inset are guides for the eye.

β is a key parameter characterizing the structure sensitivity of magnetic interaction in
the Bean–Rodbell relation. Based on the mean-field theory, we can calculate the temperature
dependence of magnetization σ = B[(Heff + H )g JμB/kBT ] utilizing the molecular field
Heff = λNg JμBσ , where B(x) is the Brillouin function, λ = 3kBTC/[Ng2μ2

B J (J + 1)], and
TC = T0 (1 + βω). J = 1.1 (deduced from saturation magnetization recorded at 5 K under
a field of 5 T) and g = 2 are adopted in the calculation. The only adjustable parameter is
β , which is set to the value that properly restores the σ–T relation, particularly the transition
temperature Ta. The equation σ = B[(Heff + H )g JμB/kBT ] can be self-consistently solved.
Figure 5 is a comparison of the calculated and measured σ–T relations for selected samples
with x = 1.2 and 1.8. The β value thus obtained varies between 16.5 and 39, as a function of
x . The corresponding bulk elastic modulus is 1.98–2.29 × 107 N cm−2, similar to that of Fe
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Figure 5. Measured and calculated thermal magnetization curves with the parameters indicated for
selected samples with x = 1.2 and 1.6.

Table 1. Parameters involved in the Bean–Rodbell model and the corresponding maximum
spontaneous magnetostriction.

x Ta T0 β B (107 N cm−2) 3J NkBT0β/[2(J + 1)B] η

1.2 191.5 170.0 39.0 1.98 0.0215 2.34
1.6 210.3 205.3 28.0 2.18 0.0170 1.27
1.8 222.4 222.4 22.0 2.26 0.0139 0.82
2.0 241.5 241.5 16.5 2.29 0.0112 0.49

(∼1.68 × 107 N cm−2) [13]. Table 1 gives the parameters involved in the Bean–Rodbell model
and the corresponding maximum spontaneous magnetostriction.

Considerable uncertainty occurs for the determination of β in the case of x = 1.6–2.0
because of the broadening of the magnetic transition, which could be a combined effect of
intrinsic broadening and sample inhomogeneity. As a supplement, we would like to point
out that the presence of a small amount of α-Fe does not influence our conclusion. The
magnetization of α-Fe is nearly constant in the temperature range concerned because of the
high Curie temperature of Fe (∼1043 K), and has been subtracted from the total magnetization
in our calculation.

With the known T0, β , and B , η can be calculated, which is a parameter for the
characterization of the phase transition. It varies from ∼2.34 to ∼0.49 as the Si content of LFS
increases from 1.2 to 2.0. Compared with LFS, the first-order character of the phase transition
in MnFeP0.45As0.55 (η = 1.4) is much weaker than that of LFS (x = 1.2), and comparable to
that of LFS (x = 1.6). It is interesting to note that the entropy change of MnFeP0.45As0.55 is also
between those of samples of LFS with x = 1.2 and 1.6. However, the PM Curie temperature
of the LFS family is lower than that of MnFeP0.45As0.55 (T0 = 296 K). This explains the low
Ta of LFS.
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5. Discussion

As has been experimentally proved, for the LFS compound the magnetic transition shifts to high
or low temperatures when the lattice expands or shrinks. These results indicate the presence of
a close relation between the FM coupling and the atom spacing. It would be interesting to check
whether the Bean–Rodbell relation equipped with the parameters listed in table 1 really gives
a proper description for the magnetoelastic coupling in LFS. A typical magnetovolume effect
is the enhancement of the magnetic coupling in LFS after introducing interstitial hydrogen. It
has been reported that the transition temperature of the sample with the nominal composition
LaFe11.44Si1.56Hδ increases from Ta ∼ 195 K to ∼336 K if the hydrogen content, which here
has a value of δ = 1.6, is absorbed. An XRD study revealed a volume expansion of ∼2.1%
due to the presence of interstitial hydrogen [5]. It is obvious that the lattice expansion could
affect the Curie temperature of either the low- or the high-temperature phase. Take the high-
temperature phase as an example. A simple calculation indicates that the lattice expansion will
lead to a new T0. Noting the fact that the transition temperature (Ta) of LaFe11.44Si1.56 (∼195 K)
is in between those of our x = 1.2 (Ta = 191.5 K) and x = 1.6 (Ta = 210.3 K) samples, a
direct extrapolation gives T0 ≈ 176 K and β ≈ 37. Therefore, the new T0 after the interstitial
hydrogen is loaded will be T0 = 176 × (1 + 37 × 0.021) ≈ 313 K (ω = 2.1%). If the presence
of interstitial atoms does not influence the first-order character of the magnetic transition for
LFS, which is a plausible assumption according to the work of Fujita et al [14], the difference
between Ta and T0 (∼20 K) will be approximately retained. This actually implies that the new
Ta will be ∼333 K. It is a value in satisfactory agreement with the observed one, ∼336 K. It is
easy to see that the effects of interstitial hydrogen would be weakened when the content of Si
is high, due to the decrease of η and β . This is also the apparent reason for the evolution of the
magnetic transition from first order to second order.

In contrast, the magnetic transition will be depressed when a high pressure is applied.
Fujita et al found a reduction of ∼90 K in the transition temperature of LaFe11.44Si1.56 under
a pressure of 1 GPa [6, 7]. In contrast to the situation with interstitial hydrogen, high pressure
could produce a volume contraction of the compound. It is easy to calculate that the relative
volume change will be P/B ≈ 0.5% under a pressure of 1 GPa if B ≈ 2 × 107 N cm−2 is
adopted for LaFe11.44Si1.56. As with the situation with interstitial hydrogen, a new T0 for the
system under the pressure of 1 GPa could be calculated with the expression T0 = 176×(1–37×
0.005) ≈ 143 K. Considering the relation Ta > T0, Ta evaluated in this way will be much larger
than the experimentally observed Ta = 105 K. The reason for this discrepancy may be that
the parameters used here were derived under ambient pressure. It is obvious that to describe
the system under high pressures, parameters under the corresponding conditions should be
used. This is different from the case of hydrogen doping. As proved by Fujita et al [14], the
thermomagnetization curves of LaFe11.44Si1.56Hδ shift nearly rigidly to high temperatures with
increasing hydrogen content, which actually implies the maintenance of the character of the
phase transition though the change of the Curie temperature is as large as ∼140 K.

As for the pressure effect, it can be seen from [7] that accompanying the decrease of the
Curie temperature (Ta) with pressure, the magnetic transition becomes increasingly sharp. This
suggests an enhancement of the first-order character of the phase transition, and thus a variation
of T0 and β . This has been confirmed by an analysis of the magnetization isotherm obtained
under a pressure of 0.8 GPa for the compound LaFe11.5Si1.5, the only data available for us (not
shown). If B remains as 2×107 N cm−2, we obtained that T0 ≈ 47 K and β ≈ 183 for this com-
pound. The new T0 and β can be checked by the expression T0 = 176×(1–183×0.004) ≈ 47 K
(P/B ∼ 0.4%). These results indicate that this gives a satisfactory description of the pressure
effect as well.
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6. Summary

Based on the Bean–Rodbell model, which assumes a linear variation of the exchange coupling
with atom spacing, the magnetovolume effects in LaFe13−xSix (x = 1.2–2.0) have been
studied systematically. A relation between phase volume and magnetization is first obtained by
comparing the structural and magnetic data collected at various temperatures. The maximum
spontaneous magnetostriction thus derived is found to be strongly Si content dependent,
linearly decreasing from ∼2.15% for x = 1.2 to ∼1.12% for x = 2. Based on these results
and the magnetic data, the parameters involved in the Bean–Rodbell model are determined.
Further analysis indicates that the Bean–Rodbell model equipped with these parameters gives
a satisfactory explanation for the magnetovolume effects produced by the introduction of
interstitial hydrogen for the LaFe11.44Si1.56 hydride. To explain the pressure effects, in contrast,
changes of the parameters under pressure, which are a result of the enhancement of the first-
order character of the phase transition, have to be taken into account. These results indicate
that either the increase or the decrease of the Curie temperature is simply a consequence of the
variation of the phase volume due to the introduction of interstitial atoms or the application of
a high pressure, and can be described by the Bean–Rodbell model well.
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